حل عددی معادلات کنترل بهینه فردهلم
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
- نویسنده سیما آغچی
- استاد راهنما فریده قریشی محمدرضا پیغامی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1394
چکیده
چکیده: نامه، ابتدا مفاهیم اولیه در ارتباط با مسائل کنترل بهینه فردهلم و ولترا و ?? در این پایان های عددی ?? برخی قضایای مرتبط به این مبحث را بیان کرده و سپس با استفاده از روش متفاوت به حل مسائل کنترل بهینه درگیر با معادلات انتگرال غیرخطی ولترا و فردهلم های طیفی بالاخصروش شبه طیفی بر اساس توابع ?? پردازیم. در ادامه به معرفی روش ?? می پایه لاگرانژ پرداخته و با استفاده از این روش، به حل مسئله کنترل بهینه درگیر با معادلات هایی، کارایی ?? پردازیم. در انتهای تمامی فصول با ارائه مثال ?? انتگرال غیرخطی فردهلم می ایم. ?? ها را نشان داده ?? این روش
منابع مشابه
بهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملحل عددی رده ای از مسائل کنترل بهینه با قیود معادلات انتگرالی فردهلم
نظری? کنترل در دهه های اخیر به عنوان یک ابزار قدرتمند برای توصیف فرآیندهای اقتصادی، صنعتی و علوم زیستی و به دست آوردن جواب بهینه در مدل های ریاضی توسعه یافته است. از طرفی برای مدل بندی بسیاری از مسائل، هم چون مسائل مقدار مرزی در فیزیک و دینامیک سیالات از معادلات انتگرالی استفاده می شود. بنابراین مسائل کنترل بهینه تحت معادلات انتگرالی و بویژه معادلات انتگرالی فردهلم از اهمیت زیادی برخور دارند. ا...
15 صفحه اولحل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل
در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم بسل است. نت...
متن کاملحل عددی کنترل بهینه معادلات موج "کنترل نوسانات مرزی"
مساله کنترل بهینه با محدودیت معادلات دیفرانسیل جزئی"بالاخص معادلات موج"کاربرد زیادی در مهندسی معماری دارد و می توان از آن در حل مسائل شبیه سازی سازه ها استفاده نمود. فرم کلی این مسائل که مورد بررسی قرار می گیرد. حل مساله فوق به روش تحلیلی براساس کار gugat مورد بررسی قرار می گیرد. (2005) سپس حل عددی به روش تئوری اندازه براساس کار روبیو، علوی و... مورد بررسی قرار می گیرد. همچنین حل عددی مساله فو...
حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین
در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...
متن کاملروش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی
در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023